A recent eprint caught my atention: Single-world interpretations of quantum theory cannot be self-consistent by Daniela Frauchiger and Renato Renner. In the abstract we read

We find that, in such a scenario, no single-world interpretation can be logically consistent. This conclusion extends to deterministic hidden-variable theories, such as Bohmian mechanics, for they impose a single-world interpretation.

The article contains an experiment based on Wigner's friend thought experiment, from which is deduced in a Theorem that there cannot exist a theory T that satisfies the following conditions:

(QT)Compliance with quantum theory: T forbids all measurement results that are forbidden by standard [non-relativistic] quantum theory (and this condition holds even if the measured system is large enough to contain itself an experimenter).

(SW)Single-world: T rules out the occurrence of more than one single outcome if an

experimenter measures a system once.

(SC)Self-consistency: T's statements about measurement outcomes are logically consistent (even if they are obtained by considering the perspectives of different experimenters).

A proof of the inconsistency of Bohmian mechanics (discovered by de Broglie and rediscovered and further developed by David Bohm) would already be a big deal, because despite being rejected with enthusiasm by many quantum theorists, it was never actually refuted, neither by reasoning, nor by experiment. Bohmian mechanics is based on two objects: the

*pilot-wave*, which is very similar to the standard wavefunction and evolves according to the Schrödinger equation, and the*Bohmian trajectory*, which is an integral curve of the current associated to the Schrödinger equation. While one would expect the Bohmian trajectory to be the trajectory of a physical particle, all observables and physical properties, including mass, charge, spin, properties like non-locality and contextuality, are attributes of the wave, and not of the Bohmian particle. This explains in part why BM is able to satisfy (QT). The pilot-wave itself evolves unitarily, not being subject to the collapse. Decoherence (first discovered by Bohm when developing this theory) plays a major role. The only role played by the Bohmian trajectory seems (to me at least) to be to point which outcome was obtained during an experiment. In other words, the pilot-wave behaves just like in the Many-Worlds Interpretation, and the Bohmian trajectory is used only to select a single-world. But the other single-worlds are equally justified, once we accepted all branches of the pilot-wave to be equally real, and the Bohmian trajectory really plays no role. I will come back later with a more detailed argumentation of what I said here about Bohmian mechanics, but I repeat, this is not a refutation of BM, rather some arguments coming from my personal taste and expectations of what a theory of QT should do. Anyway, if the result of the Frauchiger-Renner paper is correct, this will show not only that the Bohmian trajectory is not necessary, but also that it is impossible in the proposed experiment. This would be really strange, given that the Bohmian trajectory is just an integral curve of a vector field in the configuration space, and it is perfectly well defined for almost all initial configurations. This would be a counterexample given by Bohmian mechanics itself to the Frauchiger-Renner theorem. Or is the opposite true?
But when you read their paper you realize that any theory compatible with standard quantum theory (which satisfies QT and SW) has to be inconsistent, including therefore standard QT itself. Despite the fact that the paper analyzes all three options obtained by negating each of the three conditions, it is pretty transparent that the only alternative has to be Many-Worlds. In fact, even MW, where each world is interpreted as a single-world, seems to be ruled out. If correct, this may be the most important result in the foundations of QT in decades.

Recall that the Many-Worlds Interpretation is considered by most of its supporters as being the logical consequence of the Schrödinger equation, without needing to assume the wavefunction collapse. The reason is that the unitary evolution prescribed by the Schrödinger equation contains in it all possible results of the measurement of a quantum system, in superposition. And since each possible result lies in a branch of the wavefunction that can no longer interfere with the other branches, there will be independent branches behaving as separate worlds. Although there are some important open questions in the MWI, the official point of view is that the most important ones are already solved without assuming more than the Schrödinger equation. So perhaps for them this result would add nothing. But for the rest of us, it would really be important.

My first impulse was that there is a circularity in the proof of the Frauchiger-Renner theorem: they consider that it is possible to perform an experiment resulting in the superposition of two different classical states of a system. Here by "classical state" I understand of course still a quantum state, but one which effectively looks classical, as a measurement device is expected to be before and after the measurement. In other words, their experiment is designed so that an observer sees a superposition of a dead cat and an alive one. Their experiment is cleverly designed so that two such observations of "Schrödinger cats" lead to inconsistencies, if (SW) is assumed to be true. So my first thought was that this means they already assume MWI, by allowing an observer to observe a superposition between a classical state that "happened" and one that "didn't happen".

But the things are not that simple, because even if a quantum state looks classical, it is still quantum. And there seem to be no absolute rule to forbid the superposition of two classical states. Einselection (

*environment-induced superselection*) is a potential answer, but so far it is still an open problem, and at any rate, unlike the usual superselection rules, it is not an exact rule, but again an effective one (even if it would be proven to resolve the problem). So the standard formulation of QT doesn't actually forbid superpositions of classical states. Well, in Bohr's interpretation there are quantum and there are classical objects, and the distinction is unbreakable, so for him the extended Wigner's friend experiment proposed by Frauchiger and Renner would not make sense. But if we want to include the classical level in the quantum description, it seems that there is nothing to prevent the possibility, in principle, of this experiment.
Reading the Frauchiger-Renner paper made me think that there is an important open problem in QT, because it doesn't seem to prescribe how to deal with classical states:

Does QT allow quantum measurements of classical (macroscopic) systems, so that the resulting states are non-classical superpositions of their classical states?

I am not convinced that we are allowed to do this even in principle (in practice seems pretty clear it is impossible), but also I am not convinced why we are forbidden. To me, this is a big open problem. Can the answer to this question be derived logically from the principles of standard QT, or should it be added as an independent, new principle?

My guess is that we don't have a definitive solution yet. It is therefore a matter of choice: those accepting that we are allowed to perform any quantum measurements on classical states, perhaps already accept MWI, and consider that it is a logical consequence of the Schrödinger equation. Those who think that one can't perform on classical states quantum measurements that result in Schrödinger cats, will of course object to the result of the paper of Frauchiger and Renner and consider its proof circular.

I will not rush with the verdict about the Frauchiger-Renner paper. But I think at least the open problem I mentioned deserves more attention. Nevertheless, if their result is true, it will pose a big problem not only to Bohmian mechanics, but also to standard QT. And also to my own proposed interpretation, which is based on the possibility of a single-world unitary solution of the Schrödinger equation (see my recent paper On the Wavefunction Collapse and the references therein).

## 1 comment:

Interesting discussion. I am adding a trackback to the original arXiv paper so others can also read.

http://arxiv.org/trackback/1604.07422

Post a Comment