Thursday, May 11, 2017

Maudlin's "(Information) Paradox Lost" paper

Tim Maudlin has an interesting paper in which he criticizes the importance given to the black hole information paradox, and even brings arguments that it is not even a problem: (Information) Paradox Lost. I agree that the importance of the problem is perhaps exaggerated, but at the same time many consider it to be a useful benchmark to test quantum gravity solutions. This led to decades of research made by many physicists, and to many controversies. I wrote a bit about some of the proposed solutions to the problem in some older posts, for example [1,2,3]. Maudlin's paper is discussed by Sabine here.

One of the central arguments in Maudlin's paper is that the well-known spacetime illustrating the information loss can be foliated into some 3D spaces (which are Cauchy hypersurfaces that are discontinuous at the singularity). These hypersurfaces have a part outside the black hole, and another one inside it, which are not connected to one another. Cauchy hypersurfaces contain the Cauchy data necessary to solve the partial differential equations, so the information should be preserved if we consider both their part inside and their part outside the black hole.

I illustrate this with this animated gif:

I made this gif back in 2010, when I independently had the same idea and wanted to write about it, but I don't think I made it public. Probably the idea is older. The reason I didn't write about it was that I was more attracted* to another solution I found, which led to an analytic extension of the black hole spacetime, and has Cauchy hypersurfaces but no discontinuities. I reproduce a picture of the Penrose diagram from an older post in which I say more about this:

A. The standard Penrose diagram of an evaporating black hole.
B The diagram from the analytic solution  I proposed.

* The reason I preferred to work at the second solution is that it allows the information to become available after the evaporation to an external observer. The solution which relies on completing the Cauchy hypersurface with a part inside the black hole doesn't restore information and unitarity for an external observer. I don't know if this is a problem, but many physicists believe that information should be restored for an external observer, because otherwise we would observe violations of unitarity even in the most mundane cases, considering that micro black holes form and evaporate at very high energies. I don't think this argument, also given by Sabine, is very good, because there is no reason to believe that micro black  holes form at high energy under normal conditions. People arrive at high energies for normal situations because they use perturbative expansions, but this is just a method of approximation. And even so, I doubt anyone who sums over Feynman diagrams includes black holes. But nevertheless, I wouldn't like information to be lost for an outside observer after evaporation, but this is just personal taste, I don't claim that there is some experiment that proved this. And the solution I preferred to research allows recovery of information and unitarity for an external observer, and other things which I explained in the mentioned posts and my PhD thesis.